Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Acceleration of the global water cycle over recent decades remains uncertain because of the high inter-annual variability of its components. Observations of pan evaporation (E-pan), a proxy of potential evapotranspiration (ETp), may help to identify trends in the water cycle over long periods. The complementary relationship (CR) states that ETp and actual evapotranspiration (ETa) depend on each other in a complementary manner, through land-atmosphere feedbacks in water-limited environments. Using a long-term series of E-pan observations in Australia, we estimated monthly ETa by the CR and compared our estimates with ETa measured at eddy covariance Fluxnet stations. The results confirm that our approach, entirely data-driven, can reliably estimate ETa only in water-limited conditions. Furthermore, our analysis indicated that ETa did not show any significant trend in the last 30 years, while short-term analysis may indicate a rapid climate change that is not perceived in a long-term perspective.
Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Jakob Boyd Pernov, Hélène Paule Angot, Lubna Dada, Federico Bianchi
Michael Lehning, Wolf Hendrik Huwald, Adrien Michel, Bettina Schaefli, Nander Wever
Julia Schmale, Jakob Boyd Pernov