Applying Multi- and Cross-Lingual Stochastic Phone Space Transformations to Non-Native Speech Recognition
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multiaccented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by usi ...
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Ku ...
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Ku ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...
We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of low-dimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstruct ...
Idiap2016
Kullback-Leibler divergence based hidden Markov model (KL-HMM) is an approach where a posteriori probabilities of phonemes estimated by artificial neural networks (ANN) are modeled directly as feature observation. In this paper, we show the relation betwee ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...
Recently, several multi-layer perceptron (MLP)- based front-ends have been developed and used for Mandarin speech recognition, often showing significant complementary properties to conventional spectral features. Although widely used in multiple Mandarin s ...
One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multiaccented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by usi ...
We analyze a simple hierarchical architecture consisting of two multilayer perceptron (MLP) classifiers in tandem to estimate the phonetic class conditional probabilities. In this hierarchical setup, the first MLP classifier is trained using standard acous ...