Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. H ...
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...
Mg-3wt.%RE alloys show substantially enhanced < c + a > activity as compared to pure Mg or other Mg-Al, Mg-Zn alloys of similar grain sizes. Activation of < c + a > slip has been postulated to be associated with the reduction of the basal Li stacking fault ...
Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at hig ...
The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Delta E(tau) versus stress tau. Here, a ...
A model is presented to predict the effectiveness of dilute solutes in delaying precipitate formation, with application to natural and artificial aging in metal alloys. Control of aging is achieved via the binding, at natural aging temperatures, and releas ...
The stability of a mixed < c + a > dislocation on the pyramidal I plane in magnesium is studied using molecular dynamics simulations. The dislocation is metastable and undergoes a thermally-activated transition to either a sessile, basal-dissociated < c + ...
Random solid solution alloys are a broad class of materials that are used across the entire spectrum of engineering metals, whether as stand-alone materials (e.g. Al-57xxx alloys) or as the matrix in precipitate strengthening materials (e.g. Ni-based super ...
Hydrogen atoms have a wide variety of effects on the mechanical performance of metals, and the underlying mechanisms associated with effects on plastic flow and embrittlement remain to be discovered or validated. Here, the reduction in the plastic flow str ...