Maximal independent setIn graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property. For example, in the graph P_3, a path with three vertices a, b, and c, and two edges and , the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}.
AlgorithmIn mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.
Dual graphIn the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.
Vertex separatorIn graph theory, a vertex subset S \subset V is a vertex separator (or vertex cut, separating set) for nonadjacent vertices a and b if the removal of S from the graph separates a and b into distinct connected components. Consider a grid graph with r rows and c columns; the total number n of vertices is r × c. For instance, in the illustration, r = 5, c = 8, and n = 40. If r is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if c is odd, there is a single central column, and otherwise there are two columns equally close to the center.
Fractional matchingIn graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Given a graph G = (V, E), a fractional matching in G is a function that assigns, to each edge e in E, a fraction f(e) in [0, 1], such that for every vertex v in V, the sum of fractions of edges adjacent to v is at most 1: A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either 0 or 1: f(e) = 1 if e is in the matching, and f(e) = 0 if it is not.
Maximum weight matchingIn computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same.
Directed acyclic graphIn mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called arcs), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions.
Social networkA social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
Percolation theoryIn statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation (cognitive psychology).
Tree (graph theory)In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytree (or directed tree or oriented tree or singly connected network) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree.