Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We obtain Liouville type theorems for mappings with bounded s-distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded q-codistorsion. ...
In this article, we study the problem (sometimes called the Berger-Nirenberg problem) of prescribing the curvature on a Riemann surface (that is on an oriented surface equipped with a conformal class of Riemannian metrics). ...
This chapter contains an introduction to triangle comparison theorems and it is proved that the fundamental group of a compact Riemannian manifold with negative sectional curvature is hyperbolic. ...
We study obstructions for a quasi-regular mapping f : M -> N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M. ...
The goal of this paper is to give an explicit analysis of the geodesic flow on the three dimensional Lie group SOL. In particular we describe its horizon. (The horizon of a riemannian manifold is a topological space parametrizing the asymptotic classes of ...
In this paper, we prove that if f is a conformal map between two Riemannian surfaces, and if the curvature of the target is nonpositive and less than or equal to the curvature of the source, then the map is contracting. ...