Publication

Tuning the length dispersion of multi-walled carbon nanotubes by ball milling

Abstract

The statistical analysis of the length distribution of catalytic chemical vapour deposition synthesized multi-walled carbon nanotubes cut by planetary ball milling is reported. The nanotube lengths follow a log-normal distribution in a broad range of grinding time and rotational speed. We show that the scale parameter of the distribution, which equals the mean of the natural logarithm of the tube lengths, decreases linearly with the product of the duration time and the rotational speed. This relation can be used for tailoring nanotube lengths by a suitable choice of process parameters for a wide range of applications. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.