Electromagnetic fieldAn electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by moving electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical counterpart to the quantized electromagnetic field tensor in quantum electrodynamics (a quantum field theory). The electromagnetic field propagates at the speed of light (in fact, this field can be identified as light) and interacts with charges and currents.
Ferrite coreIn electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity (which helps prevent eddy currents). Moreover, because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies, and ferrite loopstick antennas for AM radio receivers.
Inverse magnetostrictive effectThe inverse magnetostrictive effect, magnetoelastic effect or Villari effect, after its discoverer Emilio Villari, is the change of the magnetic susceptibility of a material when subjected to a mechanical stress. The magnetostriction characterizes the shape change of a ferromagnetic material during magnetization, whereas the inverse magnetostrictive effect characterizes the change of sample magnetization (for given magnetizing field strength ) when mechanical stresses are applied to the sample.
Diatonic and chromaticDiatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900. These terms may mean different things in different contexts. Very often, diatonic refers to musical elements derived from the modes and transpositions of the "white note scale" C–D–E–F–G–A–B.
ChromaticismChromaticism is a compositional technique interspersing the primary diatonic pitches and chords with other pitches of the chromatic scale. In simple terms, within each octave, diatonic music uses only seven different notes, rather than the twelve available on a standard piano keyboard. Music is chromatic when it uses more than just these seven notes. Chromaticism is in contrast or addition to tonality or diatonicism and modality (the major and minor, or "white key", scales).
Paraxial approximationIn geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens). A paraxial ray is a ray which makes a small angle (θ) to the optical axis of the system, and lies close to the axis throughout the system. Generally, this allows three important approximations (for θ in radians) for calculation of the ray's path, namely: The paraxial approximation is used in Gaussian optics and first-order ray tracing.
Acyclic coloringIn graph theory, an acyclic coloring is a (proper) vertex coloring in which every 2-chromatic subgraph is acyclic. The acyclic chromatic number A(G) of a graph G is the fewest colors needed in any acyclic coloring of G. Acyclic coloring is often associated with graphs embedded on non-plane surfaces. A(G) ≤ 2 if and only if G is acyclic. Bounds on A(G) in terms of Δ(G), the maximum degree of G, include the following: A(G) ≤ 4 if Δ(G) = 3. A(G) ≤ 5 if Δ(G) = 4. A(G) ≤ 7 if Δ(G) = 5. A(G) ≤ 12 if Δ(G) = 6.
Abbe numberIn optics and lens design, the Abbe number, also known as the V-number or constringence of a transparent material, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of V indicating low dispersion. It is named after Ernst Abbe (1840–1905), the German physicist who defined it. The term V-number should not be confused with the normalized frequency in fibers.