Publication

Sliding-induced adhesion of stiff polymer microfiber arrays. II. Microscale behaviour

Bryan Edward Schubert
2008
Journal paper
Abstract

The adhesive pads of geckos provide control of normal adhesive force by controlling the applied shear force. This frictional adhesion effect is one of the key principles used for rapid detachment in animals running up vertical surfaces. We developed polypropylene microfibre arrays composed of vertical, 0.3 μm radius fibres with elastic modulus of 1 GPa which show this effect for the first time using a stiff polymer. In the absence of shear forces, these fibres show minimal normal adhesion. However, sliding parallel to the substrate with a spherical probe produces a frictional adhesion effect which is not seen in the flat control. A cantilever model for the fibres and the spherical probe indicates a strong dependence on the initial fibre angle. A novel feature of the microfibre arrays is that adhesion improves with use. Repeated shearing of fibres temporarily increases maximum shear and pull-off forces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.