SmoothingIn statistics and , to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal.
Posterior probabilityThe posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior probability contains everything there is to know about an uncertain proposition (such as a scientific hypothesis, or parameter values), given prior knowledge and a mathematical model describing the observations available at a particular time.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.