A stable penalty method for the compressible Navier-Stokes equations: II. One-dimensional domain decomposition schemes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A system of differential equations for coupled fluid and drug transport in vascularized (malignant) tissues is derived by a multiscale expansion. We start from mass and momentum balance equations, stated in the physical domain, geometrically characterized ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
An adaptive multiresolution scheme is proposed for the numerical solution of a spatially two-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model consists in a version of the Stokes equations f ...
A class of numerical schemes is developed for the study of charged particle transport in complex stationary electromagnetic fields and tested for fields obtained from a numerical solution of the magneto-hydrodynamic equation. The performances of these sche ...
In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing ...
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler Coriolis fluids respec ...
This work is focused on the development of a geometrical multiscale framework for modeling the human cardiovascular system. This approach is designed to deal with different geometrical and mathematical models at the same time, without any preliminary hypot ...
This paper describes the implementation of a 3D parallel and Cartesian level set (LS) method coupled with a volume of fluid (VOF) method into the commercial CFD code FLUENT for modeling the gas-liquid interface in bubbly flow. Both level set and volume of ...
The Monge problem [23], [27], as reformulated by Kantorovich [19], [20] is that of the transportation, at a minimum "cost", of a given mass distribu- tion from an initial to a final position during a given time interval. It is an optimal transport problem ...
The simulation of viscoelastic fluids is a challenging task from the theoretical and numerical points of view. This class of fluids has been extensively studied with the help of classical numerical methods. In this paper we propose a new approach based on ...