Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A preconditioned two-level overlapping Schwarz method for solving unstructured nodal discontinuous Galerkin discretizations of the indefinite Helmholtz problem is studied. We employ triangles in two dimensions and in a local discontinuous Galerkin (LDG) variational setting. We highlight the necessary components of the algorithm needed to achieve efficient results in the context of high-order elements and indefinite algebraic systems. More specifically, we demonstrate the importance of not only coarse-grid solution sweeps, but also for increased overlap in the subdomain solves as the order of the elements increases. In this paper, we detail the discretization strategy and offer an effective approach to solving the resulting system of equations, with numerical evidence in support.
Simone Deparis, Luca Pegolotti
Pablo Antolin Sanchez, Ondine Gabrielle Chanon
Fabio Zoccolan, Gianluigi Rozza