High-order collocation methods for differential equations with random inputs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of th ...
In this thesis we consider inverse problems involving multiscale elliptic partial differential equations. The name multiscale indicates that these models are characterized by the presence of parameters which vary on different spatial scales (macroscopic, m ...
We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, dis- tributed forcing term that minimizes ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
We study the electrical conductivity of hot Abelian plasma containing scalar charge carriers in the leading logarithmic order in coupling constant alpha using the Boltzmann kinetic equation. The leading contribution to the collision integral is due to the ...
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its comp ...
A central question in numerical homogenization of partial differential equations with multiscale coefficients is the accurate computation of effective quantities, such as the homogenized coefficients. Computing homogenized coefficients requires solving loc ...
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the model ...
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...
The aim of this work is to propose and analyse a new high-order discontinuous Galerkin finite element method for the time integration of a Cauchy problem for second-order ordinary differential equations. These equations typically arise after space semidisc ...