Bedload transport powered by daily floods: unsteadiness and stochasticity.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Glacier-fed streams are the cold, ultra-oligotrophic, and unstable streams that are fed by glacial meltwater. Despite these extreme conditions, they harbour a diverse and abundant microbial diversity that develops into biofilms, covering the boulders and s ...
Ionic wind, produced by electrohydrodynamic (EHD) processes, holds promise for efficient airflow generation using minimal power. However, practical applications have been limited by relatively low flow rates. This study introduces a novel prototype device ...
The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...
The dynamic of fine sediment in rivers is closely related to the interactions between fine particles, the riverbed and the flow conditions. The accumulation of fine sediment in the riverbed reduces vertical water exchanges and can have detrimental effects ...
Riverbeds represent the habitat of numerous aquatic species. Exchanges between the groundwater, the hyporheic zone and the surface flow are also essential for river ecosystems. Fine sediment transported by rivers deposits inside or on top of the bed and mo ...
Field surveys and laboratory experiments show that bedload transport rates may vary to within one order of magnitude for a given water discharge. One of today's major challenges is to account for these large transport rate fluctuations in computational hyd ...
Fine sediment represents an important part of the solid flux of rivers. Due to the size of these particles, they are often transported as suspended load. They gradually fill the pores of the substrate forming the hyporheic zone or cover the substrate by se ...
There is a paradox in the relationship between bedload transport rates and flow variables: laboratory and field studies have reported on how bedload transport rates depend on flow variables through a power law, but none of the empirical laws fitted to the ...