Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fueled by recent advances in deep neural networks, reinforcement learning (RL) has been in the limelight because of many recent breakthroughs in artificial intelligence, including defeating humans in games (e.g., chess, Go, StarCraft), self-driving cars, s ...
In the past few years, the importance of electric mobility has increased in response to growing concerns about climate change. However, limited cruising range and sparse charging infrastructure could restrain a massive deployment of electric vehicles (EVs) ...
Buildings account for over 70% of the electricity use in the US. As cities grow, high peaks of electricity consumption are becoming more frequent, which leads to higher prices for electricity. Demand response is the coordination of electrical loads such th ...
Touch is commonly used to mediate human-machine interactions, notably in the setting of Digital Musical Instruments (DMIs), where touch screens are prevalent. The lack of rich haptic feedback has an impact on the richness and quality of the interaction. Pi ...
An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained ...
This article develops a fully decentralized multiagent algorithm for policy evaluation. The proposed scheme can be applied to two distinct scenarios. In the first scenario, a collection of agents have distinct datasets gathered by following different behav ...
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...
Learning to achieve one’s goal in a complex environment is a complicated task. In reinforcement learning (RL) tasks, an agent interacts with the environment to learn optimal actions. In humans, striatal areas are strongly involved in these tasks. During ag ...
When making a choice with limited information, we explore new features through trial-and-error to learn how they are related. However, few studies have investigated exploratory behaviour when information is limited. In this study, we address, at both the b ...
For decades, neuroscientists and psychologists have observed that animal performance on spatial navigation tasks suggests an internal learned map of the environment. More recently, map-based (or model-based) reinforcement learning has become a highly activ ...