Self-trapping and back-action effects in hollow photonic crystal cavity optical trap
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Fast and label-free techniques to analyze viruses and bacteria are of crucial interest in biological and bio-medical applications. For this purpose, optofluidic systems based on the integration of photonic structures with microfluidic layers were shown to ...
During the last decade, the development of optofluidic chips has become a large field of research. The integration of nano and microstructures with microfluidics layers allowed for the miniaturisation of a number of tools traditionally used in laboratories ...
On-chip optical tweezers based on evanescent fields overcome the diffraction limit of the free-space optical tweezers and can be a promising technique for developing lab-on-a-chip devices. While such trapping allows for low-cost and precise manipulation, i ...
III-nitride waveguides featuring AlInN claddings and GaN/AlGaN quantum wells (QWs) offer promising perspectives for applications in many fields of short-wavelength photonics. Thanks to their nearly lattice-matched nature, these structures exhibit an excell ...
We present the concept and detailed design of a Smart Slit Assembly for next generation spectrometers, and we experimentally demonstrate operation of an individual 221 mu m x 111 mu m smart slit channel employing a MEMS actuated shutter to continuously mod ...
Single-particle tracking and optical tweezers are powerful techniques for studying diverse processes at the microscopic scale. The stochastic behavior of a microscopic particle contains information about its interaction with surrounding molecules, and an o ...
Integrated microring resonators are well suited for wavelength-filtering applications in optical signal processing, and cascaded microring resonators allow flexible filter design in coupledresonator optical waveguide (CROW) configurations. However, the imp ...
Washington2023
Miniaturization has been at the forefront of scientific research in the past decade covering diverse areas such as electronics, mechanics, and optics. While 'small is beautiful' may be a vast generalization, the true benefits of miniaturization are especia ...
Higher magic angle spinning (MAS) frequencies than currently available are desirable to improve spectral resolution in NMR and EPR systems. While conventional strategies employ pneumatic spinning limited by fluid dynamics, this paper demonstrates the devel ...