Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The EUROfusion DEMO machine is at its pre-conceptual stage. The design of the magnet system for this machine is being developed in collaboration with several European research centers. The Poloidal Field (PF) coils proposed by the Swiss Plasma Center (SPC) ...
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
Thermonuclear fusion of light atoms is the primary energy source of stars, such as our Sun, that led to the emergence of life on Earth. However, its economic exploitation as a virtually unlimited and clean energy source is yet to be developed. One of the m ...
Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not e ...
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
Thermonuclear fusion is a potentially clean and limitless energy source that can substantially change the current global electricity generation mix, which is highly dependent on limited fossil fuels.
This thesis contributes to the development of fusion en ...
Wall conditioning is essential in tokamak and stellarator research to achieve plasma performance and reproducibility. This paper presents an overview of recent conditioning results, both from experiments in present devices and modelling, in view of devices ...
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
The power exhaust through the scrape-off layer (SOL) in fusion reactors is expected to be significantly higher than in ITER, thus questioning the extrapolation of the ITER exhaust solution to these devices. The snowflake (SF) magnetic configuration is one ...