Multi-factor Segmentation for Topic Visualization and Recommendation: the MUST-VIS System
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
EPFL2024
In this work, we present a new semantic segmentation model for historical city maps that surpasses the state of the art in terms of flexibility and performance. Research in automatic map processing is largely focused on homogeneous corpora or even individu ...
Mass digitization and the opening of digital libraries gave access to a huge amount of historical newspapers. In order to bring structure into these documents, current techniques generally proceed in two distinct steps. First, they segment the digitized im ...
Though deep learning (DL) algorithms are very powerful for image processing tasks, they generally require a lot of data to reach their full potential. Furthermore, there is no straightforward way to impose various properties, given by the prior knowledge a ...
The ventro-intermediate nucleus (Vim), as part of the motor thalamic nuclei, is a commonly used target in functional stereotactic neurosurgery for treatment of drug-resistant tremor. As it cannot be directly visualized on routinely used magnetic resonance ...
Apartment searching has been a hot demand all over the world. Understanding the apartment structure will significantly contribute to simplifying the searching process. In this project, the fully convolutional networks are applied to generate semantic segme ...
A large part of computer vision research is devoted to building models
and algorithms aimed at understanding human appearance and behaviour
from images and videos. Ultimately, we want to build automated systems
that are at least as capable as people when i ...
Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and s ...
We propose an active learning approach to image segmentation that exploits geometric priors to speed up and streamline the annotation process. It can be applied for both background foreground and multi-class segmentation tasks in 2D images and 3D image vol ...
Salient object detection is evaluated using binary ground truth (GT) with the labels being salient object class and background. In this study, the authors corroborate based on three subjective experiments on a novel image dataset that objects in natural im ...