Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The speech signal conveys information on different time scales from short (20–40 ms) time scale or segmental, associated to phonological and phonetic information to long (150–250 ms) time scale or supra segmental, associated to syllabic and prosodic inform ...
The speech signal conveys information on different time scales from short (20--40 ms) time scale or segmental, associated to phonological and phonetic information to long (150--250 ms) time scale or supra segmental, associated to syllabic and prosodic info ...
This research takes place in the general context of improving the performance of the Distant Speech Recognition (DSR) systems, tackling the reverberation and recognition of overlap speech. Perceptual modeling indicates that sparse representation exists in ...
The speech signal conveys information on different time scales from short (20--40 ms) time scale or segmental, associated to phonological and phonetic information to long (150--250 ms) time scale or supra segmental, associated to syllabic and prosodic info ...
Since the prosody of a spoken utterance carries information about its discourse function, salience, and speaker attitude, prosody mod- els and prosody generation modules have played a crucial part in text-to- speech (TTS) synthesis systems from the beginni ...
The advent of statistical parametric speech synthesis has paved new ways to a unified framework for hidden Markov model (HMM) based text to speech synthesis (TTS) and automatic speech recognition (ASR). The techniques and advancements made in the field of ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...
Automatic speaker verification systems can be spoofed through recorded, synthetic or voice converted speech of target speakers. To make these systems practically viable, the detection of such attacks, referred to as presentation attacks, is of paramount in ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...