Publication

Improving Object Classification using Pose Information

Abstract

We propose a method that exploits pose information in order to improve object classification. A lot of research has focused in other strategies, such as engineering feature extractors, trying different classifiers and even using transfer learning. Here, we use neural network architectures in a multi-task setup, whose outputs predict both the class and the camera azimuth. We investigate both Multi-layer Perceptrons and Convolutional Neural Network architectures, and achieve state-of-the-art results in the challenging NORB dataset.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.