Grapheme and Multilingual Posterior Features For Under-Resource Speech Recognition: A Study on Scottish Gaelic
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Standard automatic speech recognition (ASR) systems use phoneme-based pronunciation lexicon prepared by linguistic experts. When the hand crafted pronunciations fail to cover the vocabulary of a new domain, a grapheme-to-phoneme (G2P) converter is used to ...
Standard hidden Markov model (HMM) based automatic speech recognition (ASR) systems use phonemes as subword units. Thus, development of ASR system for a new language or domain depends upon the availability of a phoneme lexicon in the target language. In th ...
Standard automatic speech recognition (ASR) systems rely on transcribed speech, language models, and pronunciation dictionaries to achieve state-of-the-art performance. The unavailability of these resources constrains the ASR technology to be available for ...
This paper investigates robust privacy-sensitive audio features for speaker diarization in multiparty conversations: ie., a set of audio features having low linguistic information for speaker diarization in a single and multiple distant microphone scenario ...
One of the key challenge involved in building a statistical automatic speech recognition (ASR) system is modeling the relationship between lexical units (that are based on subword units in the pronunciation lexicon) and acoustic feature observations. To mo ...
Standard automatic speech recognition (ASR) systems use phonemes as subword units. Thus, one of the primary resource required to build a good ASR system is a well developed phoneme pronunciation lexicon. However, under-resourced languages typically lack su ...
The work described in this thesis takes place in the context of capturing real-life audio for the analysis of spontaneous social interactions. Towards this goal, we wish to capture conversational and ambient sounds using portable audio recorders. Analysis ...
This paper investigates robust privacy-sensitive audio features for speaker diarization in multiparty conversations: ie., a set of audio features having low linguistic information for speaker diarization in a single and multiple distant microphone scenario ...
One of the key challenges involved in building statistical automatic speech recognition (ASR) systems is modeling the relationship between subword units or “lexical units” and acoustic feature observations. To model this relationship two types of resources ...
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...