Integrating Posterior Features and Self-Organizing Maps for Isolated Word Recognition without Dynamic Programming
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this thesis is to develop and design new feature representations that can improve the automatic speech recognition (ASR) performance in clean as well noisy conditions. One of the main shortcomings of the fixed scale (typically 20-30 ms long ana ...
Local state or phone posterior probabilities are often investigated as local scores (e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., ``Tandem'') to improve speech recogni tion systems. In this paper, we present initial results towa ...
Local state or phone posterior probabilities are often investigated as local scores (e.g., hybrid HMM/ANN systems) or as transformed acoustic features (e.g., ``Tandem'') to improve speech recogni tion systems. In this paper, we present initial results towa ...
Methods to improve noise robustness of speech recognition systems often result in degradation of recognition performance for clean speech. Recently proposed Phase AutoCorrelation (PAC) \cite{ikbal03,ikbal03a} based features, showing noticeable improvement ...
Methods to improve noise robustness of speech recognition systems often result in degradation of recognition performance for clean speech. Recently proposed Phase AutoCorrelation (PAC) \cite{ikbal03,ikbal03a} based features, showing noticeable improvement ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
Efficient representation of visual information lies at the foundation of many image processing tasks, including compression, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant information of an ob ...