Publication

Efficient Path Profiling

James Richard Larus
1996
Conference paper
Abstract

A path profile determines how many times each acyclic path in a routine executes. This type of profiling subsumes the more common basic block and edge profiling, which only approximate path frequencies. Path profiles have many potential uses in program performance tuning, profile-directed compilation, and software test coverage. This paper describes a new algorithm for path profiling. This simple, fast algorithm selects and places profile instrumentation to minimize run-time overhead. Instrumented programs run with overhead comparable to the best previous profiling techniques. On the SPEC95 benchmarks, path profiling overhead averaged 31%, as compared to 16% for efficient edge profiling. Path profiling also identifies longer paths than a previous technique, which predicted paths from edge profiles (average of 88, versus 34 instructions). Moreover, profiling shows that the SPEC95 train input datasets covered most of the paths executed in the ref datasets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.