Data structureIn computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type.
Compile timeIn computer science, compile time (or compile-time) describes the time window during which a language's statements are converted into 0s and 1s for the computer to understand. The term is used as an adjective to describe concepts related to the context of program compilation, as opposed to concepts related to the context of program execution (runtime). For example, compile-time requirements are programming language requirements that must be met by source code before compilation and compile-time properties are properties of the program that can be reasoned about during compilation.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.
Evaluation strategyIn a programming language, an evaluation strategy is a set of rules for evaluating expressions. The term is often used to refer to the more specific notion of a parameter-passing strategy that defines the kind of value that is passed to the function for each parameter (the binding strategy) and whether to evaluate the parameters of a function call, and if so in what order (the evaluation order). The notion of reduction strategy is distinct, although some authors conflate the two terms and the definition of each term is not widely agreed upon.
Prototype-based programmingPrototype-based programming is a style of object-oriented programming in which behaviour reuse (known as inheritance) is performed via a process of reusing existing objects that serve as prototypes. This model can also be known as prototypal, prototype-oriented, classless, or instance-based programming. Prototype-based programming uses the process generalized objects, which can then be cloned and extended. Using fruit as an example, a "fruit" object would represent the properties and functionality of fruit in general.
Search data structureIn computer science, a search data structure is any data structure that allows the efficient retrieval of specific items from a set of items, such as a specific record from a database. The simplest, most general, and least efficient search structure is merely an unordered sequential list of all the items. Locating the desired item in such a list, by the linear search method, inevitably requires a number of operations proportional to the number n of items, in the worst case as well as in the average case.
F Sharp (programming language)F# (pronounced F sharp) is a functional-first, general-purpose, strongly typed, multi-paradigm programming language that encompasses functional, imperative, and object-oriented programming methods. It is most often used as a cross-platform Common Language Infrastructure (CLI) language on .NET, but can also generate JavaScript and graphics processing unit (GPU) code. F# is developed by the F# Software Foundation, Microsoft and open contributors. An open source, cross-platform compiler for F# is available from the F# Software Foundation.
Imperative programmingIn computer science, imperative programming is a programming paradigm of software that uses statements that change a program's state. In much the same way that the imperative mood in natural languages expresses commands, an imperative program consists of commands for the computer to perform. Imperative programming focuses on describing how a program operates step by step, rather than on high-level descriptions of its expected results.
ML (programming language)ML (Meta Language) is a general-purpose functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the types of most expressions without requiring explicit type annotations, and ensures type safety - there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying.
Systemic functional linguisticsSystemic functional linguistics (SFL) is an approach to linguistics, among functional linguistics, that considers language as a social semiotic system. It was devised by Michael Halliday, who took the notion of system from J. R. Firth, his teacher (Halliday, 1961). Firth proposed that systems refer to possibilities subordinated to structure; Halliday "liberated" choice from structure and made it the central organising dimension of SFL.