Instruction-level parallelismInstruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically ILP refers to the average number of instructions run per step of this parallel execution. ILP must not be confused with concurrency. In ILP there is a single specific thread of execution of a process. On the other hand, concurrency involves the assignment of multiple threads to a CPU's core in a strict alternation, or in true parallelism if there are enough CPU cores, ideally one core for each runnable thread.
Parallel communicationIn data transmission, parallel communication is a method of conveying multiple binary digits (bits) simultaneously using multiple conductors. This contrasts with serial communication, which conveys only a single bit at a time; this distinction is one way of characterizing a communications link. The basic difference between a parallel and a serial communication channel is the number of electrical conductors used at the physical layer to convey bits. Parallel communication implies more than one such conductor.
Very long instruction wordVery long instruction word (VLIW) refers to instruction set architectures designed to exploit instruction level parallelism (ILP). Whereas conventional central processing units (CPU, processor) mostly allow programs to specify instructions to execute in sequence only, a VLIW processor allows programs to explicitly specify instructions to execute in parallel. This design is intended to allow higher performance without the complexity inherent in some other designs.
Memory segmentationMemory segmentation is an operating system memory management technique of dividing a computer's primary memory into segments or sections. In a computer system using segmentation, a reference to a memory location includes a value that identifies a segment and an offset (memory location) within that segment. Segments or sections are also used in s of compiled programs when they are linked together into a and when the image is loaded into memory.
Branch (computer science)A branch is an instruction in a computer program that can cause a computer to begin executing a different instruction sequence and thus deviate from its default behavior of executing instructions in order. Branch (or branching, branched) may also refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction. Branch instructions are used to implement control flow in program loops and conditionals (i.e., executing a particular sequence of instructions only if certain conditions are satisfied).
Parallel portIn computing, a parallel port is a type of interface found on early computers (personal and otherwise) for connecting peripherals. The name refers to the way the data is sent; parallel ports send multiple bits of data at once (parallel communication), as opposed to serial communication, in which bits are sent one at a time. To do this, parallel ports require multiple data lines in their cables and port connectors and tend to be larger than contemporary serial ports, which only require one data line.
Computer simulationComputer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering.
Map (parallel pattern)Map is an idiom in parallel computing where a simple operation is applied to all elements of a sequence, potentially in parallel. It is used to solve embarrassingly parallel problems: those problems that can be decomposed into independent subtasks, requiring no communication/synchronization between the subtasks except a join or barrier at the end. When applying the map pattern, one formulates an elemental function that captures the operation to be performed on a data item that represents a part of the problem, then applies this elemental function in one or more threads of execution, hyperthreads, SIMD lanes or on multiple computers.
Parallel programming modelIn computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs can execute. The implementation of a parallel programming model can take the form of a library invoked from a sequential language, as an extension to an existing language, or as an entirely new language.
Continuous simulationContinuous Simulation refers to simulation approaches where a system is modeled with the help of variables that change continuously according to a set of differential equations. It is notable as one of the first uses ever put to computers, dating back to the Eniac in 1946. Continuous simulation allows prediction of rocket trajectories hydrogen bomb dynamics (N.B. this is the first use ever put to the Eniac) electric circuit simulation robotics Established in 1952, the Society for Modeling and Simulation International (SCS) is a nonprofit, volunteer-driven corporation dedicated to advancing the use of modeling & simulation to solve real-world problems.