Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State
Related publications (78)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The application of an external magnetic field can lift the spin degeneracy of electronic states through its interaction with the electronic magnetic moment. A closely-related phenomenon is the Rashba-Bychkov (RB) effect where symmetry breaking at surfaces ...
We present an angle-resolved photoelectron spectroscopy study of the changes in the electronic structure of electron-doped Ba(Fe1-xCox)(2)As-2 across the superconducting phase transition. By changing the polarization of the incoming light, we were able to ...
The Hall coefficient RH of the cuprate superconductor YBa 2Cu3Oy was measured in magnetic fields up to 60 T for a hole concentration p from 0.078 to 0.152 in the underdoped regime. In fields large enough to suppress superconductivity, RH(T) is seen to go f ...
In this thesis we study various effects of magnetism in proximity structures, composed of superconducting electrodes in contact with a normal metal. Magnetism can be present in the system through the Zeeman and the orbital coupling. Proximity structures of ...
We present an angle-resolved photoelectron spectroscopy study of YBa2Cu3O7-delta films in situ grown by pulsed laser deposition. We have successfully produced underdoped surfaces with ordered oxygen vacancies within the CuO chains resulting in a clear orth ...
We use an SU(2) mean-field theory approach with input from variational wave functions of the t-J model to study the electronic spectra in the pseudogap phase of cuprates. In our model, the intermediate-temperature state of underdoped cuprates is realized b ...
We use small-angle neutron scattering to study the superconducting vortex lattice in La2−xSrxCuO4 as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting coherence length ξ are ...
Using angle-resolved photoemission spectroscopy, we report on the direct observation of the energy gap in 2H-NbSe2 caused by the charge-density waves (CDW). The gap opens in the regions of the momentum space connected by the CDW vectors, which implies a ne ...
The mutual interplay between superlattice structures, band filling factors, and spin-orbit coupling results in a highly correlated electronic spin and charge state found for an array of atomic Pb wires grown on Si(557). By means of spin-and angle-resolved ...
The charge-density-wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical-potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton conde ...