Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this paper, we tackle the problem of unsupervised classification of hyperspectral images. We propose a clustering method based on graphs representing the data structure, which is assumed to be an union of multiple manifolds. The method constraints the pixels to be expressed as a low-rank and sparse combination of the others in a reproducing kernel Hilbert spaces (RKHS). This captures the global (low-rank) and local (sparse) structures. Spectral clustering is applied on the graph to assign the pixels to the different manifolds. A large scale approach is proposed, in which the optimization is first performed on a subset of the data and then it is applied to the whole image using a non-linear collaborative representation respecting the manifolds structure. Experiments on two hyperspectral images show very good unsupervised classification results compared to competitive approaches.
Vinitra Swamy, Paola Mejia Domenzain, Julian Thomas Blackwell, Isadora Alves de Salles
, ,