Publication

Non-linear Low-rank and Sparse Representation for Hyperspectral Image Analysis

Abstract

In this paper, we tackle the problem of unsupervised classification of hyperspectral images. We propose a clustering method based on graphs representing the data structure, which is assumed to be an union of multiple manifolds. The method constraints the pixels to be expressed as a low-rank and sparse combination of the others in a reproducing kernel Hilbert spaces (RKHS). This captures the global (low-rank) and local (sparse) structures. Spectral clustering is applied on the graph to assign the pixels to the different manifolds. A large scale approach is proposed, in which the optimization is first performed on a subset of the data and then it is applied to the whole image using a non-linear collaborative representation respecting the manifolds structure. Experiments on two hyperspectral images show very good unsupervised classification results compared to competitive approaches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.