An Information-Based Approximation Scheme for Stochastic Optimization Problems in Continuous Time
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Making decisions is part and parcel of being human. Among a set of actions, we want to choose the one that has the highest reward. But the uncertainty of the outcome prevents us from always making the right decision. Making decisions under uncertainty can ...
Machine intelligence greatly impacts almost all domains of our societies. It is profoundly changing the field of mechanical engineering with new technical possibilities and processes. The education of future engineers also needs to adapt in terms of techni ...
Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to sma ...
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This fram ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
We consider a learning system based on the conventional multiplicative weight ( MW) rule that combines experts' advice to predict a sequence of true outcomes. It is assumed that one of the experts is malicious and aims to impose the maximum loss on the sys ...
In this paper, we present a multilevel Monte Carlo (MLMC) version of the Stochastic Gradient (SG) method for optimization under uncertainty, in order to tackle Optimal Control Problems (OCP) where the constraints are described in the form of PDEs with rand ...
The central task in many interactive machine learning systems can be formalized as the sequential optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based framework for \emph{adaptive} experimentation, where the primary go ...
With the ever-growing data sizes along with the increasing complexity of the modern problem formulations, contemporary applications in science and engineering impose heavy computational and storage burdens on the optimization algorithms. As a result, there ...