Publication

Hydrocontest: Computational Fluid Dynamics of hydrofoils

Christian Frederik Kanesan
2014
Student project
Abstract

This project is developed within the scope of HydroContest which is an inter-school competition for the design of a racing boat with a high focus on energetic efficiency; the goal is to maximize the speed of the boat under the constraint of a limited power source. Hydrofoils are especially interesting since they offer an important reduction of drag at high speeds while remaining cost efficient. Within the contest, this project aims at delivering a prediction tool for the hydrofoil performance using numerical simulations of the incompressible Navier-Stokes equations approximated by the means of the Finite Element method with suitable stabilization techniques, such as the Variational Multiscale Method; we consider P1 Finite Elements with a second order BDF time discretization scheme. An automated meshing script was developed to handle arbitrary foil geometries and angles of attack. The numerical simulations were conducted using the LifeV Finite Element Library in a parallel setting. Satisfactory results have been obtained using this approach for Reynolds numbers up to 1 million.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.