Studying Droplet dynamics by depth-averaged simulation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider steady equilibrium solution of the 2-D Navier-Stokes equations describing the flow around a circular cylinder. It is well known that, for moderate Reynolds numbers, the recirculation length is an increasing function of the Reynolds number. We f ...
This article is devoted to the study of an incompressible viscous flow of a fluid partly enclosed in a cylindrical container with an open top Surface and driven by the constant rotation of the bottom wall. Such type of flows belongs to a group of recircula ...
The influence of confinement onto the inviscid and incompressible linear stability of the family of wakes introduced by Monkewitz [Phys. Fluids 31, 999 (1988)] is examined. The nondimensional parameters of the model, the velocity ratio Λ, defined as ratio ...
We present a new second-order method, based on the MAC scheme on cartesian grids, for the numerical simulation of two-dimensional incompressible flows past obstacles. In this approach, the solid boundary is embedded in the cartesian computational mesh. Dis ...
In this paper, the flow dynamics of gravity currents on a horizontal plane is investigated from a theoretical point of view by seeking similarity solutions. The current is generated by unleashing a varying volume of heavy fluid within an ambient fluid of m ...
We simulate confined droplets in microchannels by depth-averaged equations solved by a boundary element method. The retarding effect due to film formation is absent in the depth-averaged approach and added by a nonlinear boundary condition. Although deform ...
The core dynamics of the Stokes eigenmodes subjected to satisfy no-slip boundary conditions on any 2D closed contour, or 3D surface, is shown to be characterized by a linear differential functional relationship between the vector potential and vorticity, $ ...
Optimal control and shape optimization techniques have an increasing role in Fluid Dynamics problems governed by partial differential equations (PDEs). In this paper, we consider the problem of drag minimization for a body in relative motion in a fluid by ...
The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics p ...
We derive a hierarchy of PDEs for the leading-order evolution of wall-based quantities, such as the-skin-friction and the wall-pressure gradient, in two-dimensional fluid flows. The resulting Reduced Navier-Stokes (RNS) equations are defined on the boundar ...