Trace concentration - Huge impact: Nitrate in the calcite/Eu(III) system
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...
Underground storage of radioactive waste is consensually recognised as the safest storage solution by European and worldwide countries relying mainly or partially on nuclear energy production. Over twenty years of research led by the French national agency ...
Advanced geotechnical engineering applications, such as shale gas extraction, CO2 geological sequestration, and geological radioactive waste storage, often involve various types of shales located at significant depths. Shales exhibit mechanical properties ...
Currently, most Spent Nuclear Fuel (SNF) is kept safely in storage either at on-site facilities or at centralized interim storage sites. Moreover, many countries face delays in implementing their waste management programmes for SNF and high-level waste dis ...
Radioactive waste is among the most dangerous anthropogenic waste and its safe disposal is a challenging multi-generational task. Many nations have sought for the peaceful application of nuclear fission for the reliable production of electric energy to pow ...
The note presents selected results of an experimental campaign conducted with the aim to investigate the hydro-mechanical behaviour of a shale recovered at a depth of about 900 m below the ground. High-pressure oedometric tests were performed to investigat ...
Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel.In the KBS-3 type repository, the canisters containing the spent fue ...
High-level waste, stemming from nuclear electricity generation poses significant environmental and safety concerns. Currently, high-level wastes are stored in interim facilities needing constant monitoring and waiting for a definitive solution. Deep geolog ...
Microbial activity has the potential to enhance the corrosion of high-level radioactive waste disposal canisters, which, in the proposed Swiss deep geological repository, will be embedded in bentonite and placed in the Opalinus Clay rock formation (OPA). T ...
Decay heat calculations of spent nuclear fuel (SNF) using Polaris and ORIGEN codes in the SCALE code sys-tem, and CASMO5 code, are validated using measurements from the Clab and GE-Morris facilities. Multiple hypothesis testing, relying on permutations and ...