A new representation for multivariate tail probabilities
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover th ...
Distribution-on-distribution regression considers the problem of formulating and es-timating a regression relationship where both covariate and response are probability distributions. The optimal transport distributional regression model postulates that th ...
The classical multivariate extreme-value theory concerns the modeling of extremes in a multivariate random sample, suggesting the use of max-stable distributions. In this work, the classical theory is extended to the case where aggregated data, such as max ...
Mechanism design theory examines the design of allocation mechanisms or incentive systems involving multiple rational but self-interested agents and plays a central role in many societally important problems in economics. In mechanism design problems, agen ...
The spectral distribution plays a key role in the statistical modelling of multivariate extremes, as it defines the dependence structure of multivariate extreme-value distributions and characterizes the limiting distribution of the relative sizes of the co ...
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
Stochastic optimization is a popular modeling paradigm for decision-making under uncertainty and has a wide spectrum of applications in management science, economics and engineering. However, the stochastic optimization models one faces in practice are int ...
Peaks-over-threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, w ...
We consider three classes of linear differential equations on distribution functions, with a fractional order alpha is an element of [0; 1]. The integer case alpha = 1 corresponds to the three classical extreme families. In general, we show that there is a ...