Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The thesis is a contribution to extreme-value statistics, more precisely to the estimation of clustering characteristics of extreme values. One summary measure of the tendency to form groups is the inverse average cluster size. In extreme-value context, th ...
The spectral density function plays a key role in fitting the tail of multivariate extremal data and so in estimating probabilities of rare events. This function satisfies moment constraints but unlike the univariate extreme value distributions has no simple ...
We present a class of models that, via a simple construction, enables exact, incremental, non-parametric, polynomial-time, Bayesian inference of conditional measures. The approach relies upon creating a sequence of covers on the conditioning variable and m ...
In this thesis, we focus on Impulse Radio (IR) Ultra-WideBand (UWB) ranging and positioning techniques under indoor propagation environments. IR-UWB, a new carrierless communication scheme using impulses, is a candidate technology for future communication, ...
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full poster ...
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian po ...
We consider a confidence parametrization of binary information sources in terms of appropriate likelihood ratios. This parametrization is used for Bayesian belief updates and for the equivalent comparison of binary experiments. In contrast to the standard ...
We consider the problem of ranging with Impulse Radio (IR) Ultra-WideBand (UWB) radio under weak Line Of Sight (LOS) environments and additive Gaussian noise. We use a Bayesian approach where the prior distribution of the channel follows the IEEE 802.15.4a ...
We consider the problem of positioning estimation with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths and additive Gaussian noise environments. Most popular positioning algorithms first estimate certain parameters (such as time of arr ...
We describe a method for aligning multiple unlabeled configurations simultane- ously. Specifically, we extend the two-configuration matching approach of Green and Mardia (2006) to the multiple configuration setting. Our approach is based on the in- troduct ...