Tonotopic organization in monkey and human auditory cortex using phase-encoded functional MRI
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
Aversively-motivated associative learning allows animals to avoid harm and thus ensures survival. Aversive learning can be studied by the fear learning paradigm, in which an innocuous sensory stimulus like a tone (conditioned stimulus, CS), acquires a nega ...
An important function of the brain is to interpret incoming sensory information from the outside world to guide adaptive behavior. Understanding how and where sensory information is transformed into motor commands in a context- and learning-dependent manne ...
Recently, flexible and soft bioelectronic interfaces have been proposed as a solution to improve existing neural interfaces that currently present mechanical mismatch with the soft tissue. These are devices fabricated with thin polymeric or elastomeric bac ...
Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the ...
Auditory cortex volume and shape differences have been observed in the context of phonetic learning, musicianship and dyslexia. Heschl's gyrus, which includes primary auditory cortex, displays large anatomical variability across individuals and hemispheres ...
Emotional sounds are processed within a large cortico-subcortical network, of which the auditory cortex, the voice area, and the amygdala are the core regions. Using 7T fMRI, we have compared the effect of emotional valence (positive, neutral, and negative ...
Evidence from behavioral studies suggests that the spatial origin of sounds may influence the perception of emotional valence. Using 7T fMRI we have investigated the impact of the categories of sound (vocalizations; non-vocalizations), emotional valence (p ...
BACKGROUND: Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations ...
Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear. Here, in two experim ...