General-purpose computing on graphics processing unitsGeneral-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.
Close to MetalIn computing, Close To Metal ("CTM" in short, originally called Close-to-the-Metal) is the name of a beta version of a low-level programming interface developed by ATI, now the AMD Graphics Product Group, aimed at enabling GPGPU computing. CTM was short-lived, and the first production version of AMD's GPGPU technology is now called AMD Stream SDK, or rather the current AMD APP SDK for Windows and Linux 32-bit and 64-bit. APP stands for "Accelerated Parallel Processing" and also targets Heterogeneous System Architecture.
Graphics processing unitA graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Nvidia TeslaNvidia Tesla was the name of Nvidia's line of products targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs. The Nvidia Tesla product line competed with AMD's Radeon Instinct and Intel Xeon Phi lines of deep learning and GPU cards.
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Massively parallel processor arrayA massively parallel processor array, also known as a multi purpose processor array (MPPA) is a type of integrated circuit which has a massively parallel array of hundreds or thousands of CPUs and RAM memories. These processors pass work to one another through a reconfigurable interconnect of channels. By harnessing a large number of processors working in parallel, an MPPA chip can accomplish more demanding tasks than conventional chips. MPPAs are based on a software parallel programming model for developing high-performance embedded system applications.
Hardware accelerationHardware acceleration is the use of computer hardware designed to perform specific functions more efficiently when compared to software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calculated in software running on a generic CPU can also be calculated in custom-made hardware, or in some mix of both. To perform computing tasks more quickly (or better in some other way), generally one can invest time and money in improving the software, improving the hardware, or both.
Single instruction, multiple threadsSingle instruction, multiple threads (SIMT) is an execution model used in parallel computing where single instruction, multiple data (SIMD) is combined with multithreading. It is different from SPMD in that all instructions in all "threads" are executed in lock-step. The SIMT execution model has been implemented on several GPUs and is relevant for general-purpose computing on graphics processing units (GPGPU), e.g. some supercomputers combine CPUs with GPUs. The processors, say a number p of them, seem to execute many more than p tasks.
Larrabee (microarchitecture)Larrabee is the codename for a cancelled GPGPU chip that Intel was developing separately from its current line of integrated graphics accelerators. It is named after either Mount Larrabee or Larrabee State Park in Whatcom County, Washington, near the town of Bellingham. The chip was to be released in 2010 as the core of a consumer 3D graphics card, but these plans were cancelled due to delays and disappointing early performance figures.
Heterogeneous computingHeterogeneous computing refers to systems that use more than one kind of processor or core. These systems gain performance or energy efficiency not just by adding the same type of processors, but by adding dissimilar coprocessors, usually incorporating specialized processing capabilities to handle particular tasks. Usually heterogeneity in the context of computing referred to different instruction-set architectures (ISA), where the main processor has one and other processors have another - usually a very different - architecture (maybe more than one), not just a different microarchitecture (floating point number processing is a special case of this - not usually referred to as heterogeneous).