We report electron spin resonance (ESR), Raman scattering, and interband absorption measurements of the multiferroic FeTe2O5Br with two successive magnetic transitions at T-N1 = 11.0 K and T-N2 = 10.5 K. ESR measurements show all characteristics of a low-dimensional frustrated magnet: (i) the appearance of an antiferromagnetic resonance (AFMR) mode at 40 K, a much higher temperature than T-N1, and (ii) a weaker temperature dependence of the AFMR linewidth than in classical magnets, Delta H-pp(T) proportional to T-n with n = 2.2-2.3. Raman spectra at ambient pressure show a large variation of phonon intensities with temperature while there are no appreciable changes in phonon numbers and frequencies. This demonstrates the significant role of the polarizable Te4+ lone pairs in inducing multiferroicity. Under pressure at P = 2.12-3.04 GPa Raman spectra undergo drastic changes and absorption spectra exhibit an abrupt drop of a band gap. This evidences a pressure-induced structural transition related to changes of the electronic states at high pressures.
,
Michael Allan Hope, Yuxuan Zhang