Atomistic simulation of the a(0) < 1 0 0 > binary junction formation and its unzipping in body-centered cubic iron
Related publications (62)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magnesium is an excellent candidate as lightweight structural material, but has strong plastic anisotropy, and the activation of, operation of, and competition between different slip and twinning systems remain active areas of research. Here, the nucleatio ...
Body-centered cubic metals are of high technological interest: for example tungsten as potential plasma facing component in future fusion reactors, molybdenum employed in aircraft parts, niobium as superconducting magnets, etc. The characteristics of their ...
Ferritic steels are the main candidates for the structural components of future fusion reactors. Because of the complexity of their structure, most of the simulation works are focused on the base phase of these materials such as alpha-Fe or Fe-Cr alloy. In ...
Polycrystalline materials with crystallite diameters below hundred nanometer exhibit extraordinary strength which goes along with a decrease in ductility. In order to tailor tough materials, which combine strength and ductility, the underlying deformation ...
Ferritic steels are the main candidates for the structural components of future fusion reactors. Because of the complexity of their structure, most of the simulation works are focused on the base phase of these materials such as alpha-Fe or Fe-Cr alloy. In ...
With recent developments in micro and nano-technologies, mechanical components such as those used in medicine or electronics tend to be miniaturized, requiring a new set of testing techniques to study their reliability and performance. One of the new metho ...
While propagation of dislocations in body centered cubic metals at low temperature is understood in terms of elementary steps on {110} planes, slip traces correspond often with other crystallographic or non-crystallographic planes. In the past, characteriz ...
Degradation of mechanical properties due to nanometric irradiation induced defects is one of the challenging issues in designing ferritic materials for future nuclear fusion reactors. Various types of defects, namely dislocation loops, voids, He bubbles an ...
The aim of the thesis is to obtain more understanding about the influence of plastic deformation on the microstructural changes observed in single crystal (SX) Ni-based superalloys using diffraction techniques. This work was organised around two main probl ...
In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called alpha' preci ...