Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution
Related publications (236)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recently, single-particle cryo-electron microscopy emerged as a technique capable of determining protein structures at near-atomic resolution and resolving protein dynamics with a temporal resolution ranging from second to milliseconds. This thesis describ ...
Ternary-based titanium nitride (TiN) thin films have drawn attention toward rational applications due to their wear resistance, high hardness, and corrosion resistance. The influence of Mo content on the structural, tribo-logical, and mechanical properties ...
Tantalum oxide Ta2O5 nanotubes (NTs) were prepared by electrochemical anodization and were decorated with lead sulfide nanoparticles PbS (NPs) by Successive Ionic Layer Adsorption and Reaction commonly known as the SILAR method. The PbS NPs/Ta2O5 NTs were ...
Heterostructures consisting of SmNiO3 and NdNiO3 alternating layers with additional LaAlO3 spacer layers were grown and fully characterized by means of x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy. A change in t ...
Observing the fast dynamics of nanoscale systems is crucial in order to understand and ultimately control their behavior. Characterizing these dynamic processes requires techniques with atomic spatial resolution and a temporal resolution that matches the t ...
The invention of 3D atomic force microscopy (3D-AFM) has enabled visualizing subnanoscale 3D hydration structures. Meanwhile, its applications to imaging flexible molecular chains have started to be experimentally explored. However, the validity and princi ...
The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation ...
Time-resolved electron microscopy has made significant progress in recent years, with some groups now working on instruments that offer attosecond temporal resolution. While much of the research in the field revolves around the improvement of temporal reso ...
3D printing of earthen materials is on the rise in the field of Additive Manufacturing (AM) due to the opportunity this technique offers to realize structures and manufacts with low environmental impacts, but very little is known about the hydromechanical ...
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformation ...