**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Optimally Packed Chains of Bulges in Multishift QR Algorithms

Abstract

The QR algorithm is the method of choice for computing all eigenvalues of a dense nonsymmetric matrix A. After an initial reduction to Hessenberg form, a QR iteration can be viewed as chasing a small bulge from the top left to the bottom right corner along the subdiagonal of A. To increase data locality and create potential for parallelism, modern variants of the QR algorithm perform several iterations simultaneously, which amounts to chasing a chain of several bulges instead of a single bulge. To make effective use of level 3 BLAS, it is important to pack these bulges as tightly as possible within the chain. In this work, we show that the tightness of the packing in existing approaches is not optimal and can be increased. This directly translates into a reduced chain length by 33% compared to the state-of-the-art LAPACK implementation of the QR algorithm. To demonstrate the impact of our idea, we have modified the LAPACK implementation to make use of the optimal packing. Numerical experiments reveal a uniform reduction of the execution time, without affecting stability or robustness.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (25)

Related concepts (32)

Related publications (33)

Simulation Neurocience

Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.

Simulation Neurocience

Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.

Simulation Neurocience

Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.

QR decomposition

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Any real square matrix A may be decomposed as where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning ) and R is an upper triangular matrix (also called right triangular matrix).

Arnoldi iteration

In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices. The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called direct methods which must complete to give any useful results (see for example, Householder transformation).

Generalized minimal residual method

In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975.

For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...

Daniel Kressner, Alice Cortinovis

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...

We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...