Cyclic codeIn coding theory, a cyclic code is a block code, where the circular shifts of each codeword gives another word that belongs to the code. They are error-correcting codes that have algebraic properties that are convenient for efficient error detection and correction. Let be a linear code over a finite field (also called Galois field) of block length . is called a cyclic code if, for every codeword from , the word in obtained by a cyclic right shift of components is again a codeword.
CodeIn communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication channel or storage in a storage medium. An early example is an invention of language, which enabled a person, through speech, to communicate what they thought, saw, heard, or felt to others. But speech limits the range of communication to the distance a voice can carry and limits the audience to those present when the speech is uttered.
One-time padIn cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is larger than or equal to the size of the message being sent. In this technique, a plaintext is paired with a random secret key (also referred to as a one-time pad). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition.
Key sizeIn cryptography, key size, key length, or key space refer to the number of bits in a key used by a cryptographic algorithm (such as a cipher). Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), because the security of all algorithms can be violated by brute-force attacks. Ideally, the lower-bound on an algorithm's security is by design equal to the key length (that is, the algorithm's design does not detract from the degree of security inherent in the key length).
Key stretchingIn cryptography, key stretching techniques are used to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources (time and possibly space) it takes to test each possible key. Passwords or passphrases created by humans are often short or predictable enough to allow password cracking, and key stretching is intended to make such attacks more difficult by complicating a basic step of trying a single password candidate.
Key-agreement protocolIn cryptography, a key-agreement protocol is a protocol whereby two or more parties can agree on a cryptographic key in such a way that both influence the outcome. If properly done, this precludes undesired third parties from forcing a key choice on the agreeing parties. Protocols that are useful in practice also do not reveal to any eavesdropping party what key has been agreed upon. Many key exchange systems have one party generate the key, and simply send that key to the other party—the other party has no influence on the key.
Stream cipher attacksStream ciphers, where plaintext bits are combined with a cipher bit stream by an exclusive-or operation (xor), can be very secure if used properly. However, they are vulnerable to attacks if certain precautions are not followed: keys must never be used twice valid decryption should never be relied on to indicate authenticity Stream ciphers are vulnerable to attack if the same key is used twice (depth of two) or more. Say we send messages A and B of the same length, both encrypted using same key, K.
Symmetric-key algorithmSymmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption).
Shared secretIn cryptography, a shared secret is a piece of data, known only to the parties involved, in a secure communication. This usually refers to the key of a symmetric cryptosystem. The shared secret can be a password, a passphrase, a big number, or an array of randomly chosen bytes. The shared secret is either shared beforehand between the communicating parties, in which case it can also be called a pre-shared key, or it is created at the start of the communication session by using a key-agreement protocol, for instance using public-key cryptography such as Diffie–Hellman or using symmetric-key cryptography such as Kerberos.
Decoding methodsIn coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel. is considered a binary code with the length ; shall be elements of ; and is the distance between those elements. One may be given the message , then ideal observer decoding generates the codeword .