Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of th ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
We introduce a generic convex energy functional that is suitable for both grayscale and vector-valued images. Our functional is based on the eigenvalues of the structure tensor, therefore it penalizes image variation at every point by taking into account t ...
This is a survey paper on estimates for the topological degree and related topics which range from the characterizations of Sobolev spaces and BV functions to the Jacobian determinant and nonlocal filter problems in Image Processing. These results are obta ...
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any ord ...
We review spectral methods for the solution of hyperbolic problems. To keep the discussion concise, we focus on Fourier spectral methods and address key issues of accuracy, stability, and convergence of the numerical approximations. Polynomial methods are ...
This thesis concerns optimal packing problems of tubes, or thick curves, where thickness is defined as follows. Three points on a closed space curve define a circle. Taking the infimum over all radii of pairwise-distinct point triples defines the thickness ...
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by mu ...
In this paper we present the continuous and discontinuous Galerkin methods in a unified setting for the numerical approximation of the transport dominated advection-reaction equation. Both methods are stabilized by the interior penalty method, more precise ...