Publication

Efficient, compact and low loss thermo-optic phase shifter in silicon

Abstract

We design a resistive heater optimized for efficient and low-loss optical phase modulation in a silicon-on-insulator (SOI) waveguide and characterize the fabricated devices. Modulation is achieved by flowing current perpendicular to a new ridge waveguide geometry. The resistance profile is engineered using different dopant concentrations to obtain localized heat generation and maximize the overlap between the optical mode and the high temperature regions of the structure, while simultaneously minimizing optical loss due to free-carrier absorption. A 61.6 m m long phase shifter was fabricated in a CMOS process with oxide cladding and two metal layers. The device features a phase-shifting efficiency of 24.77 +/- 0.43 mW/pi and a -3 dB modulation bandwidth of 130.0 +/- 5.59 kHz; the insertion loss measured for 21 devices across an 8-inch wafer was only 0.23 +/- 0.13 dB. Considering the prospect of densely integrated photonic circuits, we also quantify the separation necessary to isolate thermo-optic devices in the standard 220 nm SOI platform. (C) 2014 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.