Analysis of adiabatic trapping for quasi-integrable area-preserving maps
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A class of Neumann type systems are derived separating the spatial and temporal variables for the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation and the modified Korteweg-de Vries (mKdV) hierarchy. The Lax-Moser matrix of Neumann type s ...
Let n > 2 be even; r >= 1 be an integer; 0 < alpha < 1; Omega be a bounded, connected, smooth, open set in R-n; and nu be its exterior unit normal. Let f, g is an element of C-r,C-alpha((Omega) over bar; Lambda(2)) be two symplectic forms (i.e., closed and ...
The underlying goal of this Master's thesis is of laying down, in so far as possible, the foundations for later work in Geometric Stochastic Mechanics. The first part is a presentation of symplectic reduction, going through the momentum map and culminating ...
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonloca ...
Let Q denote a smooth manifold acted upon smoothly by a Lie group G. The G-action lifts to an action on the total space TQ of the cotangent bundle of Q and hence on the standard symplectic Poisson algebra of smooth functions on TQ. The Poisson algebra of ...
Every action on a Poisson manifold by Poisson diffeomorphisms lifts to a Hamiltonian action on its symplectic groupoid which has a canonically defined momentum map. We study various properties of this momentum map as well as its use in reduction. ...
We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit ...
The Lagrangian and Hamiltonian structures for an ideal gauge-charged fluid are determined. Using a Kaluza-Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bun ...
In this thesis we describe a path integral formalism to evaluate approximations to the probability density function for the location and orientation of one end of a continuum polymer chain at thermodynamic equilibrium with a heat bath. We concentrate on th ...
The goal of this paper is to derive the Hamiltonian structure of polarized and magnetized Euler-Maxwell fluids by reduction of the canonical symplectic form on phase space, and to generalize the dynamics to the nonabelian case. The Hamiltonian function we ...