Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The material presented in this document is intended as a comprehensive, implementation-oriented supplement to the experimental optimization framework presented in [Bunin, G.A., Francois, G., Bonvin, D.: Feasible-side global convergence in experimental optimization. SIAM J. Optim. (submitted) (2014)]. The issues of physical degradation, unknown Lipschitz constants, measurement/estimation noise, gradient estimation, sufficient excitation, and the handling of soft constraints and/or a numerical cost function are all addressed, and a robust, implementable version of the sufficient conditions for feasible-side global convergence is proposed.