Publication

Scene Recognition with Naive Bayes Non-linear Learning

Barbara Caputo, Marco Fornoni
2014
Conference paper
Abstract

A crucial feature of a good scene recognition algorithm is its ability to generalize. Scene categories, especially those related to human made indoor places or to human activities like sports, do present a high degree of intra-class variability, which in turn requires high robustness and generalization properties. Such features are amongst the distinctive characteristics of the Naive Bayes Nearest Neighbor (NBNN) approach, an image classification framework that since its introduction in 2008 has been gaining momentum in the visual recognition community. In this paper we show how with a straightforward modification of the original NBNN scoring function it is possible to use a recently introduced latent locally linear SVM algorithm to discriminatively learn a set of prototype local features for each class. The resulting classification algorithm, that we call Naive Bayes Non-linear Learning (NBNL) preserves the generality and robustness properties of the original approach, while greatly reducing its memory requirements during testing, and significantly improving its performance. To the best of our knowledge this is the first work to exploit the structure of the local features through the use of a latent locally linear discriminative learning method. Experiments over three different public scene recognition datasets show the effectiveness of the proposed algorithm, which outperforms several existing NBNN-based methods and is competitive with standard Bag-of-Words plus SVM approaches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Naive Bayes classifier
In statistics, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features (see Bayes classifier). They are among the simplest Bayesian network models, but coupled with kernel density estimation, they can achieve high accuracy levels. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem.
Supervised learning
Supervised learning (SL) is a paradigm in machine learning where input objects (for example, a vector of predictor variables) and a desired output value (also known as human-labeled supervisory signal) train a model. The training data is processed, building a function that maps new data on expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way (see inductive bias).
Linear classifier
In the field of machine learning, the goal of statistical classification is to use an object's characteristics to identify which class (or group) it belongs to. A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector.
Show more
Related publications (83)

Data-driven approaches for non-invasive cuffless blood pressure monitoring

Clémentine Léa Aguet

Blood pressure (BP) is a crucial indicator of cardiovascular health. Hypertension is a common life-threatening condition and a key factor of cardiovascular diseases (CVDs). Identifying abnormal BP fluctuations can allow for early detection and management o ...
EPFL2023

Classification of fall directions via wearable motion sensors

Mustafa Sahin Turan

Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022

Using Machine Learning to Predict Mortality for COVID-19 Patients on Day 0 in the ICU

Nahal Mansouri, Sahand Jamal Rahi

Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
FRONTIERS MEDIA SA2022
Show more
Related MOOCs (4)
IoT Systems and Industrial Applications with Design Thinking
The first MOOC to provide a comprehensive introduction to Internet of Things (IoT) including the fundamental business aspects needed to define IoT related products.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.