Publication

Application of micro particle shadow velocimetry mu PSV to two-phase flows in microchannels

Abstract

Micro particle shadow velocimetry (mu PSV) is performed in the present study for simultaneous velocity measurement and interface tracking in both liquid-liquid and gas-liquid two-phase flows through circular microchannels of 5001 mu m diameter. The back-lit illumination using a non-coherent LED light source, combined with full refractive index matching of the liquid phases, the tube wall material and the channel exterior medium, allowed velocimetry to be done both within and around the liquid droplets, and even close to the interfaces and boundaries. Moreover, post-processing methods are proposed and implemented in order to resolve motion of isolated gas bubbles and immiscible liquid droplets in laminar flows quantitatively. In particular, simultaneous measurements of local instantaneous phase velocities and flow rates, liquid film dynamics and its thickness, shape and volume of the dispersed phase, and development length in front and at the back of the bubbles are obtained using one single sequence of gray scale shadowgraphy images. Such results are valuable for validation of corresponding numerical simulation codes. It is believed that this approach significantly reduces the size and cost of the experimental setup while increasing the accuracy and reliability of the measurements. (C) 2014 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.