Soft Cells for Programmable Self-Assembly of Robotic Modules
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we study aggregation in a swarm of simple robots, called s-bots, having the capability to self-organize and self-assemble to form a robotic system, called a swarm-bot. The aggregation process, observed in many biological systems, is of funda ...
This paper presents a new robotic concept, called SWARM-BOT, based on a swarm of autonomous mobile robots with self-assembling capabilities. SWARM-BOT takes advantage from collective and distributed approaches to ensure robustness to failures and to hard e ...
We present a new robotic concept, called SWARM-BOT, based on a swarm of small and simple autonomous mobile robots called S-BOTs. S-BOTs have a particular assembling capability that allows them to connect physically to other S-BOTs and form a bigger robot e ...
In this paper we introduce a new robotic system, called swarm-bot. The system consists of a swarm of mobile robots with the ability to connect to/disconnect from each other to self-assemble into different kinds of structures. First, we describe our vision ...
Self-assembly is a process by which pre-existing components organize into patterns or structures without human intervention. Such processes are responsible for the generation of much of the order in nature. This thesis investigates the use of self-assembly ...