Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens ...
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Mechanical resonators are widely used in sensors, transducers and optomechanical systems, where mechanical dissipation sets the ultimate limit to performance. Over the past 15 years, the quality factors in strained mechanical resonators have increased by f ...
Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning ma ...
In the development of implantable bioelectronics, the establishment of efficient wireless RF links between implants and external nodes is crucial, providing substantial contributions to the advancement of medical diagnosis, therapies, and basic science. Im ...
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR bl ...