Data structureIn computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type.
Data communicationData communication or digital communications, including data transmission and data reception, is the transfer and reception of data in the form of a digital bitstream or a digitized analog signal transmitted over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.
Sengoku periodThe Sengoku period is the period in Japanese history in which civil wars and social upheavals took place almost continuously in the 15th and 16th centuries. Though the Ōnin War (1467) is generally chosen as the Sengoku period's start date, there are many competing historiographies for its end date, ranging from 1568, the date of Oda Nobunaga's march on Kyoto, to the suppression of the Shimabara Rebellion in 1638, deep into what is traditionally considered the Edo period.
Unit of observationIn statistics, a unit of observation is the unit described by the data that one analyzes. A study may treat groups as a unit of observation with a country as the unit of analysis, drawing conclusions on group characteristics from data collected at the national level. For example, in a study of the demand for money, the unit of observation might be chosen as the individual, with different observations (data points) for a given point in time differing as to which individual they refer to; or the unit of observation might be the country, with different observations differing only in regard to the country they refer to.
Rebound effect (conservation)In conservation and energy economics, the rebound effect (or take-back effect) is the reduction in expected gains from new technologies that increase the efficiency of resource use, because of behavioral or other systemic responses. These responses diminish the beneficial effects of the new technology or other measures taken. A definition of the rebound effect is provided by Thiesen et al. (2008) as, “the rebound effect deals with the fact that improvements in efficiency often lead to cost reductions that provide the possibility to buy more of the improved product or other products or services.
Smooth numberIn number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. For example, a 7-smooth number is a number whose every prime factor is at most 7, so 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers.