Publication

Nonlinear relaxation and selective polychromatic lasing of confined polaritons

Abstract

Polaritons have often been proposed as promising candidates for the realization of all-optical devices due to the easy manipulation and control of their density and spin. In this paper we present a relaxation mechanism for confined polaritons and its application in a device based on polariton lasing in which the incoming monochromatic beam can be channeled into several polariton lasers at different wavelengths. Polaritons are injected in a 3 mu m diameter trap by an incoming beam slightly detuned with respect to a confined state, and the resulting optical bistability is then imprinted on the lower confined states through an efficient relaxation mechanism which combines phonon interaction and bosonic stimulation. Above threshold, all the confined states behave like lasers and the onset of coherence is demonstrated by spectral narrowing. Moreover, the initial polarization of the laser is conserved during the relaxation process allowing for spin logic operations. In this paper we demonstrate that, due to the nonlinear behavior, it is possible to switch ON and OFF the lasing from the confined states of the trap by tailoring the input beam. All the experimental findings are validated and very well reproduced in the framework of the generalized Gross-Pitaevskii equation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.