Connection Probabilities and RSW-type Bounds for the Two-Dimensional FK Ising Model
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...
We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...
Effective properties of materials with random heterogeneous structures are typically determined by homogenising the mechanical quantity of interest in a window of observation. The entire problem setting encompasses the solution of a local PDE and some aver ...
We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper ...
We present a theory of deformation of ribbons made of nematic polymer networks (NPNs). These materials exhibit properties of rubber and nematic liquid crystals, and can be activated by external stimuli of heat and light. A two-dimensional energy for a shee ...
We consider the nonlinear Korteweg-de Vries (KdV) equation in a bounded interval equipped with the Dirichlet boundary condition and the Neumann boundary condition on the right. It is known that there is a set of critical lengths for which the solutions of ...
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary condition. Boundary conditions at acousto-elastic interface require continuity of the normal component of particle velocity and traction, ...
In this paper, we consider the set of interfaces between + and - spins arising for the critical planar Ising model on a domain with + boundary conditions, and show that it converges to nested CLE3. Our proof relies on the study of the coupling between the ...
We consider the FK-Ising model in two dimensions at criticality. We obtain bounds on crossing probabilities of arbitrary topological rectangles, uniform with respect to the boundary conditions, generalizing results of [DCHN11] and [CS12]. Our result relies ...
We consider a gas of fermions at zero temperature and low density, interacting via a microscopic two-body potential which admits a bound state. The particles are confined to a domain with Dirichlet boundary conditions. Starting from the microscopic BCS the ...